钟南山团队携手腾讯研发新冠重症ai预测,成果登上nature子刊-凯发游戏

  钟南山团队携手腾讯研发新冠重症ai预测,成果登上nature子刊-凯发游戏

钟南山团队携手腾讯研发新冠重症ai预测,成果登上nature子刊

2020/07/21
导读
钟南山院士团队与腾讯ailab日前披露了利用ai预测covid-19患者病情发展至危重概率的研究成果,可分别预测5天、10天和30天内病情危重的概率,有助合理地为病人进行早期分诊。这项研究已在2020年7月15日发布于国际顶级期刊nature子刊nature communications。

钟南山院士团队与腾讯ailab日前披露了利用ai预测covid-19患者病情发展至危重概率的研究成果,可分别预测5天、10天和30天内病情危重的概率,有助合理地为病人进行早期分诊。这项研究已在2020年7月15日发布于国际顶级期刊nature子刊nature communications


这项名为《深度学习在新冠肺炎危重患者早期分诊中的应用》的研究,是钟南山院士团队与腾讯公司共同成立的大数据及人工智能联合实验室的成果之一,第一作者分别是广州呼吸健康研究院院长助理梁文华博士,以及腾讯ai lab医疗中心首席科学家姚建华博士、钟南山院士、广州呼吸健康研究院院长何建行、腾讯ai lab医疗中心负责人黄俊洲均为共同作者。


大数据及人工智能联合实验室副主任、腾讯医疗副总裁吴文达医生指出,当前新冠肺炎疫情在全球持续蔓延,高效抗疫、降低患者死亡风险,仍是取得抗疫胜利的关键,希望大数据、人工智能等新技术,以及腾讯海量的用户触达能力,腾讯云安全、快速部署的能力,能够在抗疫常态化中发挥作用,更有效地防控流行病疫情。




此项研究基于人工智能深度学习所建立的生存模型,对covid-19患者入院时的10项临床特征进行分析,可以帮助预测患者发展至危重病情的风险,如在患者住院期间持续采用此模型进行分析,预测结果会更加准确,有助于监测患者住院期间的风险趋势。依据此模型开发出的预测工具“covid-19患者重症早期分诊系统”已经在线公开于


医护人员只需输入患者的临床特征,重症早期分诊系统就可以返回患者在5、10和30天内病情发展至危重的概率,进而对患者进行早期分诊,对于covid-19疾病的管理具有极高的临床和经济价值。


同时,这项研究成果也通过github向全球开源,以支持全球抗击新冠疫情,github开源项目查询链接为https://github.com/cojocchen/covid19_critically_ill


临床研究显示,轻度的covid-19患者通常是自限性的,即疾病在发生发展到一定程度后,靠机体调节能够控制病情发展并逐渐恢复痊愈。但6.5%的患者有突然进展为严重疾病的趋势,这些重症病例不但需要大量的医疗护理资源,其死亡率也高达49%。因此患者突然恶化为重症是抗疫工作中主要关注的问题,尽早识别有重病风险的患者并早期进行干预,对于患者预后的改善至关重要。同时早期识别不同风险的患者进行有效分类,也有利于医疗资源的高效合理分配,确保最有重症风险的患者尽快得到最合适的医疗及护理,这种能力在疫情大规模爆发时更是至关重要。


然而,准确预测患者进展至重症的风险并非易事。研究团队发现,临床中与此相关的患者特征多达74个,这使采用传统方法建立准确的预测模型难以实现。但大数据与人工智能的发展将不可能变为可能,大数据及人工智能联合实验室团队以腾讯ailab技术为核心,通过机器学习选择变量算法,确定了10个患者特征指标,包括x线影像异常、年龄、呼吸困难、慢性阻塞性肺病、合并症数量、癌症病史、中性粒细胞/淋巴细胞比、乳酸脱氢酶、直接胆红素和肌酸激酶,以来自575个医疗中心的1590名covid-19患者病例进行模型训练,进而开发出深度学习生存cox模型。这个模型可以根据covid-19患者入院时的临床特征,预测病情发展至危重病的风险。


cox模型基于深度学习方法,相比传统经典方法,深度学习的优势是可通过神经网络对特征进行高阶非线性组合,从而更深层次地建立特征与目标函数之间的映射。经过训练,所设计的模型在验证集上的 c-index (即一致性指数(index of concordance),通过评估模型预测结果与实际观察结果的符合程度,以评价模型的预测准确性,值越接近1,准确率越高)从0.876(线性模型)提升到了 0.894,auc(指受试者工作特征曲线下面积,值在1.0和0.5之间,在auc>0.5的情况下,auc越接近于1,说明诊断效果越好)从 0.889 提升到了 0.911。


为测试模型的普适性,研究团队还对不同地理区域和不同卫生资源水平的三个独立队列进行了模型测试,三个患者队列涵盖武汉940例、湖北省武汉市以外地区380例,以及疫情期间未出现健康资源枯竭的广东73例,外部测试病例均与模型训练病例范围不重叠。三个独立队列测试中,c指数展现的重症模型预测与实际发生一致性分别为0.878、0.769和0.967,排除10个临床特征参数缺失超过3个以上患者后的队列测试模型预测与实际发生一致性分别为0.890、0.852和0.967,显示深度学习生存cox模型的准确预测具有普适性。



一项技术只有得到实际应用才能发挥出真正的价值。研究团队在深度cox模型的基础上又加了一层线性cox模型,以便产生可供医生解读的最终结果。该线性模型会按重要性分别对深度学习模型的预测值与10项特征的值赋予不同的权重,然后通过求和得到最终风险系数。该线性模型可以通过诺模图进行手动计算,因其便利性在临床上经常被用来综合各项数值换算最终评估分数。通过诺模图,医生可以很直观地了解各项观察值与风险系数之间的关系,同时也可以在没有电脑的情况下手动计算风险系数。


此外,这个ai预测系统较传统预测模型还有其他的优势,包括应用当中自动填补缺失数据而进行预测,以应对不同地区和医院的实际情况,以及可以随着应用数据的增加而不断进化,准确性可以进一步提高。


今年2月27日,钟南山院士团队与腾讯公司宣布达成合作,共同成立大数据及人工智能联合实验室,携手持续抗击新冠肺炎疫情,将以大数据及人工智能攻坚流行病、呼吸疾病和胸部疾病的筛查和防控预警。



来源:腾讯科学we大会

参与讨论
0 条评论
评论
暂无评论内容
知识分子是由饶毅、鲁白、谢宇三位学者创办的移动新媒体平台,致力于关注科学、人文、思想。
订阅newsletter

我们会定期将电子期刊发送到您的邮箱

go
网站地图